NOTE ON MMAT 5010: LINEAR ANALYSIS (2017 1ST TERM)

CHI-WAI LEUNG

1. LECTURE 1: NORMED SPACES

Throughout this note, we always denote K by the real field R or the complex field C. Let N be the
set of all natural numbers. Also, we write a sequence of numbers as a function z : {1,2,...} — K.

Definition 1.1. Let X be a vector space over the field K. A function || - || : X — R is called a
norm on X if it satisfies the following conditions.
(i) ||z|| > 0 for all x € X and ||z|| =0 if and only if x = 0.
(i) ||azx| = |a|||z|| for alla € K and z € X.
(i) ||z +yl <[zl + [yl for all z,y € X.
In this case, the pair (X, || - ||) is called a normed space.
Also, the distance between the elements x and y in X is defined by ||z — y||.

The following examples are important classes in the study of functional analysis.
Example 1.2. Consider X = K". Put
n
1
lally = (3 1wi) 7 and ol i= max o
i=1

for1 <p< oo and x = (z1,...,2,) € K"
Then || - ||, (called the usual norm as p==2) and || - ||« (called the sup-norm) all are norms on K".

Example 1.3. Put
co :={(z(7)) : x(4) € K, lim |x(7)| = 0} (called the null sequnce space)

and
0 :={(z(@)) : (@) € K, sgp |z(7)] < oo}

Then cy is a subspace of £°. The sup-norm || - || on €>° is defined by
[#]|oc := sup |a(i)]

for x € £*°. Let
coo := {(z(3)) : there are only finitly many x(i)’s are non-zero}.

Also, copy is endowed with the sup-norm defined above and is called the finite sequence space.

Example 1.4. For 1 <p < oo, put
= {(x(i) : 2(i) €K, Y |2(i)P < oo}
=1

Also, P is equipped with the norm

S

lzllp = (3 lz()P)
i=1
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for x € P, Then || - ||, is a norm on P (see [1, Section 9.1]).

Example 1.5. Let C?(R) be the space of all bounded continuous R-valued functions f on R.
Now C*(R) is endowed with the sup-norm, that is,

[/ lloc = sup | f ()]
z€eR

for every f € C*(R). Then |||« is a norm on C*(R).

Also, we consider the following subspaces of C*(X).

Let Cp(R) (resp. C’C(R)) be the space of all continuous R-valued functions f on R which vanish
at infinity (resp. have compact supports), that is, for every € > 0, there is a K > 0 such that
|f(x)| <& (resp. f(x)=0) for all |x| > K.

It is clear that we have Co(R) C Co(R) C C*(R).

Now Cy(R) and C.(R) are endowed with the sup-norm || - ||cc-

Notation 1.6. From now on, (X,|| - ||) always denotes a normed space over a field K.
Forr>0andz € X, let

(i) B(z,r) :={ye X : ||z —y| <r} (called an open ball with the center at x of radius r) and
B*(xz,r):={ye X :0< |z —y| <7}
(i) B(z,r) :={y € X : ||z —y|| < r} (called a closed ball with the center at x of radius ).
Put Bx :={x € X : ||z|]| <1} and Sx := {z € X : ||z|| = 1} the closed unit ball and the unit
sphere of X respectively.

Definition 1.7. Let A be a subset of X.

(i) A point a € A is called an interior point of A if there is r > 0 such that B(a,r) C A. Write
int(A) for the set of all interior points of A.
(ii) A is called an open subset of X if int(A) = A.

Example 1.8. We keep the notation as above.

(i) Let Z and Q denote the set of all integers and rational numbers respectively If 7. and Q both
are viewed as the subsets of R, then int(Z) and int(Q) both are empty.

(ii) The open interval (0,1) is an open subset of R but it is not an open subset of R%. In fact,
int(0,1) = (0,1) if (0,1) is considered as a subset of R but int(0,1) = () while (0,1) is
viewed as a subset of R2.

(iii) Every open ball is an open subset of X (Check!!).

Definition 1.9. We say that a sequence (x,,) in X converges to an element a € X iflim ||z, —al| =
0, that is, for any € > 0, there is N € N such that |z, — al| < e for alln > N.
In this case, (xy,) is said to be convergent and a is called a limit of the sequence (xy,).

Remark 1.10.

(i) If (zy) is a convergence sequence in X, then its limit is unique. In fact, if a and b both are the
limits of (xy,), then we have ||a —b|| < |la — zp|| + ||zn, — b]| = 0. So, ||a — b|| = 0 which implies that
a=b.

From now on, we write lim x,, for the limit of (xy) provided the limit exists.

(ii) The definition of a convergent sequence (x,,) depends on the underling space where the sequence
(zp) sits in. For example, for eachn =1,2..., let x,(i) :=1/i as 1 < i <n and z,(i) =0 as i > n.
Then (x,) is a convergent sequence in £°° but it is not convergent in cyp.



Definition 1.11. Let A be a subset of X.

(i) A point z € X is called a limit point of A if for any € > 0, there is an element a € A such
that 0 < ||z — a|| < e, that is, B*(z,e) N A # 0 for all e > 0.
Furthermore, if A contains the set of all its limit points, then A is said to be closed in X.
(ii) The closure of A, write A, is defined by

A:=AU{z € X :z is a limit point of A}.

Remark 1.12. With the notation as above, it is clear that a point z € A if and only if B(z,7)NA # ()
for all > 0. This is also equivalent to saying that there is a sequence (x,) in A such that x, — a.
In fact, this can be shown by considering r = % form=1,2...

Proposition 1.13. With the notation as before, we have the following assertions.

(i) A is closed in X if and only if its complement X \ A is open in X.

(ii) The closure A is the smallest closed subset of X containing A. The “smallest” in here
means that if F is a closed subset containing A, then A C F.
Consequently, A is closed if and only if A = A.

Proof. If A is empty, then the assertions (i) and (¢i) both are obvious. Now assume that A # (.
For part (i), let C = X \ A and b € C. Suppose that A is closed in X. If there exists an element
be C\int(C), then B(b,r) € C for all > 0. This implies that B(b,7) N A # 0 for all » > 0 and
hence, b is a limit point of A since b ¢ A. It contradicts to the closeness of A. So, A = int(A) and
thus, A is open.
For the converse of (i), assume that C is open in X. Assume that A has a limit point z but z ¢ A.
Since z ¢ A, z € C = int(C) because C is open. Hence, we can find r > 0 such that B(z,r) C C.
This gives B(z,7) N A = (). This contradicts to the assumption of z being a limit point of A. So,
A must contain all of its limit points and hence, it is closed.

For part (i), we first claim that A is closed. Let z be a limit point of A. Let 7 > 0. Then there
is w € B*(z,7) N A. Choose 0 < r; < r small enough such that B(w,r;) C B*(z,r). Since w is a
limit point of A, we have () # B*(w,r1) N A C B*(z,7) N A. So, z is a limit point of A. Thus, z € A
as required. This implies that A is closed.
It is clear that A is the smallest closed set containing A.
The last assertion follows from the minimality of the closed sets containing A immediately.
The proof is finished. O

Example 1.14. Retains all notation as above. We have ¢yg = ¢ C £°°.
Consequently, co is a closed subspace of £°° but cog is not.

Proof. We first claim that ¢gg C ¢g. Let z € £°°. It suffices to show that if z € ¢yg, then z € ¢g, that
is, lim z(i) = 0. Let £ > 0. Then there is x € B(z,¢) Ncoo and hence, we have |z(i) — z(i)| < ¢ for

1— 00
all t = 1,2..... Since x € cqo, there is ig € N such that x(i) = 0 for all i > iyg. Therefore, we have

|2(2)] = |2(i) — z(3)| < € for all i > iy. So, z € ¢y as desired.

For the reverse inclusion, let w € ¢y. It needs to show that B(w,r) Ncog # @ for all » > 0. Let
r > 0. Since w € ¢y, there is ig such that |w(i)| < r for all i > iy. If we let (i) = w(i) for 1 <i < g
and x(i) = 0 for i > g, then x € cgp and ||z — || := sup |z(i) — w(i)| < r as required. O

i=1,2
2. LECTURE 2: BANACH SPACES

A sequence (x,,) in X is called a Cauchy sequence if for any € > 0, there is N € N such that
|Xm — zn|| < e for all m,n > N. We have the following simple observation.



4 CHI-WAI LEUNG

Lemma 2.1. FEvery convergent sequence in X is a Cauchy sequence.

The following notation plays an important role in mathematics.

Definition 2.2. A subset A of X is said to be complete if if every Cauchy sequence in A 1is
convergent.
X is called a Banach space if X is a complete normed space.

Example 2.3. With the notation as above, we have the following examples of Banach spaces.

(i) If K™ is equipped with the usual norm, then K" is a Banach space.
(ii) €>° is a Banach space. In fact, if (xy) is a Cauchy sequence in £>°, then for any ¢ > 0,
there is N € N, we have

|20 (1) — T (§)] < 20 — Tmlloe <€

for allm,n > N and i = 1,2..... Thus, if we fix i = 1,2,.., then (z,(7))52, is a Cauchy
sequence in K. Since K is complete, the limit lim,, z,, (i) exists in K for all i = 1,2.... Nor
for eachi=1,2..., we put z(i) := lim,, (i) € K. Then we have z € £>° and ||z—xy||cc — 0.
So, lim,, x,, = z € {*° (Check ). Thus (> is a Banach space.

(iii) P is a Banach space for 1 < p < oco. The proof is similar to the case of £*°.

(iv) Cla,b] is a Banach space.

(v) Let Co(R) be the space of all continuous R-valued functions f on R which are vanish at
infinity, that is, for every e > 0, there is a M > 0 such that |f(x)| < e for all |x| > M.
Now Cy(R) is endowed with the sup-norm, that is,

[ flleo = sup | f ()]
zeR

for every f € Co(R). Then Cy(R) is a Banach space.

Proposition 2.4. Let Y be a subspace of a Banach space X. Then Y is a Banach space if and
only if Y is closed in X.

Proof. For the necessary condition, we assume that Y is a Banach space. Let z € Y. Then there
is a convergent sequence (yy) in Y such that y,, — 2. Since (y,,) is convergent, it is also a Cauchy
sequence in Y. Then (y,) is also a convergent sequence in Y because Y is a Banach space. So,
z € Y. This implies that Y = Y and hence, Y is closed.

For the converse statement, assume that Y is closed. Let (z,) be a Cauchy sequence in Y. Then
it is also a Cauchy sequence in X. Since X is complete, z := lim z,, exists in X. Note that z € Y
because Y is closed. So, (z,) is convergent in Y. Thus, Y is complete as desired. O

Corollary 2.5. ¢y is a Banach space but the finite sequence cyy is not.

Proposition 2.6. Let (X, || - ||) be a normed space. Then there is a normed space (Xo, || - o),
together with a linear map i : X — Xy, satisfy the following condition.
(i) Xo is a Banach space.

(ii) The map i is an isometry, that is, ||i(x)||o = ||z| for all z € X.

(iii) the image i(X) is dense in Xy, that is, i(X) = Xo.
Moreover, such pair (Xo,1) is unique up to isometric isomorphism in the following sense: if (W, || -
l1) is a Banach space and an isometry j : X — W is an isometry such that j(X) = W, then there
s an isometric isomorphism ¥ from Xqo onto W such that

j=voi: X — Xg— W.
In this case, the pair (Xo,1) is called the completion of X.
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Example 2.7. Proposition 2.6 cannot give an explicit form of the completion of a given normed
space. The following examples are basically due to the uniqueness of the completion.
(1) If X is a Banach space, then the completion of X is itself.
(ii) By Corollary 2.5, the completion of the finite sequence space cog is the null sequence space
CQ.
(7i1) The completion of C.(R) is Cp(R).

Definition 2.8. A subset A of a normed space X is said to be nowhere dense in X if int(A) = 0.

Example 2.9.

(1) The set of all integers Z is a nowhere dense subset of R.

(i1) The set (0,1) is a nowhere dense subset of R? but it is not a nowhere dense subset of R.

(131) Let A :={x € coo : ©(n) >0, for alln =1,2...}. Notice that A is a closed subset of cog. We
claim that int(A) = 0. In fact, let a € A and r > 0. Since a € cgp, there is N such that a(n) = 0
for alln > N. Now define z € coo by z(n) = x(n) forn # N and z(N) := 5. Then z € cgo \ A
and ||z — al|oo < 7. So, int(A) =0 and thus, A is a nowhere dense subset of cop.

Lemma 2.10. Let X be a Banach space. We have the following assertions.
(i) A subset A of X is nowhere dense in X if and only if the complement of A is an open dense
subset of X.
(ii) If (Wy,) is a sequence of open dense subsets of X, then (7o, Wy # 0.

Proof. For (i), let 2 € X and r > 0. It is clear that we have B(z,r) € A if and For (i), we first fix
an element x; € Wy. Since Wy is open, then there is r1 > 0 such that B(x1,71) C Wi. Notice that
since W5 is open dense in X, we can find an element xo € B(x1,71) N Wy and 0 < ro < r1/2 such
that B(x2,7m2) C B(x1,7m1) N Wa. To repeat the same step, we can get a sequence of element (z,,)
in X and a sequence of positive numbers (r,) such that

(a) Th+1 < 11/2, and

() B(zgs1,7k41) C B(wg, ) N Wi

forall k=1,2,....

From this, we see that (z}) is a Cauchy sequence in X. Then by the completeness of X, limx = a
exists in X. It remains to show that a € [|Wj. Fix N. Note that by the condition (b) above,
we see that xp € B(zn,rn) C B(zy—1,7nv—1) N Wy for all £ > N. Since B(xy,ry) is closed, we
see that a = limxy € B(xy,rn). This implies that a € Wy. Therefore, (| W}, is non-empty as
required. O

Theorem 2.11. Baire Category Theorem: Let X be a Banach space. Suppose that X =
Us2, A, for a sequence of subsets (Ay) of X. Then there is Ay, not nowhere dense in X.

Proof. Suppose that each A, is nowhere dense in X. If we put W,, := Zz, then each W, is an open
dense subset of X by Lemma 2.10 (7). Lemma 2.10 (ii) implies that (| W,, # (. This gives

x2 (W) =Umwe=J4.2J4. =x.

This leads to a contradiction. The proof is finished. ]

3. LECTURE 3: SERIES IN NORMED SPACES

Throughout this section, let X be a normed space.
Let (z,,) be a sequence elements in X. Now for each n = 1,2,.., put s,, = z1 + - -+ + z,, and call
the n-th partial sum of a formal series > o | @p.
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Definition 3.1. With the notation as above, we say that a series y .- | xy is convergent in X if
the sequence of the sequence of partial sums (s,) is convergent in X. In this case, we also write

o
an = lims,, € X.
n

n=1

Moreover, we say that a series y - | @y, is absolutely convergent in X if > o7, ||zn|| < co.

Lemma 3.2. Let (z,,) be a Cauchy sequence in a normed space X. If (x,) has a convergent
subsequence in X, then (xy) itself is convergent too.

Proof. Let (xy,) be a convergent subsequence of (x,) and let L := limy x,, € X. We are going to
show that lim,, z,, = L.

Let € > 0. Since (z,) is a Cauchy sequence, there is N € N such that ||z, — x,| < e for all
m,n > N. On the other hand, since limy x,, = L, there is K € N such that ng > N and
|IL —xn, || <e. Thus, if n > ng, we see that ||z, — L|| < ||[zn — Zn, || + [|Zn, — L|| < 2e. The proof
is finished. O

Proposition 3.3. Let X be a normed space. Then the following statements are equivalent.

(i) X is a Banach space.
(ii) Every absolutely convergent series in X is convergent.

Proof. For showing (i) = (ii), assume that X is a Banach space and let > x be an absolutely
convergent series in X. Put s, := Zzzl xp the n-th partial sum of Y  xp. Let ¢ > 0. Since the

series ), x) is absolutely convergent, there is N € N such that Z |zg|| < e forallm > N
n+1<k<n+p
and p = 1,2..... This gives ||sp4p — sn|| < Z |zk|| < e foralln > N and p = 1,2..... Thus,
n+1<k<n+p

(sn) is a Cauchy sequence in X. Then by the completeness of X, we see that the series > xy is
convergent in X as desired.

Now suppose that the condition (i¢) holds. Let (z,) be a Cauchy sequence in X. Notice that by the
definition of a Cauchy sequence, we can find a subsequence (zy, ) of (z,) such that ||z,,,, — s, || <
1/2F forall k = 1,2...... From this, we see that the series ) _; (2, ,, —n, ) is absolutely convergent in
X. Then the condition (ii) tells us that the series ), (zn,,, — n,) is convergent in X. Notice that

m
Tn,, = Tn; + Z(l’nk+1 — xp,) for all m = 1,2, .... Therefore, (z,,);2, is a convergent subsequence
k=1
of (zp,). Then by Lemma 3.2, we see that (x,) is convergent in X. The proof is finished.
O

Recall that a basis of a vector space V over K is a collection of vectors in V', say (v;)ier, such
that for each element z € V', we have a unique expression

Tr = Z ;U5
i€l
for some «; € K and all a; = 0 except finitely many «;’s.

One of fundamental properties of a vector space is that every vector space must have a basis.
The proof of this assertion is due to the Zorn’s lemma.
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Definition 3.4. A sequence (x,,) is called a Schauder basis for a normed space X if for each
element v € X, there is a unique sequence (ay,) in K such that

[o@)
(3.1) T = Zan:vn.
n=1

Remark 3.5.

(i) Notice that a Schauder basis must be linearly independent vectors. So, it is clear that every
Schauder basis is a vector basis for a finite dimensional vector space. However, a Schauder
basis need not be a vector basis for a normed space in general. For example, if we consider
the sequence (e,) in ¢y given by e,(n) = 1; otherwise, e, (i) = 0, then (e,) is a Schauder
basis for ¢p but it it is not a vector basis.

(ii) In the Definition 3.4, the expression 3.1 depends on the order of (z,). More precise, if we
are given a bijection o : {1,2...} — {1,2...}, then the Eq 3.1 CANNOT assure that we still

oo

have the expression x = Z Qg(n)To(n) for each z € X.

n=1

Example 3.6. (i) If X is of finite dimension, then the vector bases are the same as the
Schauder bases.
(ii) Let ey, be a sequence defined as in Remark 3.5(i), then the sequence (ey,) is a Schauder basis
for the spaces cy and P for 1 < p < oo.

Definition 3.7. A normed space X is said to be separable if there is a countable dense subset of
X.

Example 3.8. (i) The space C™ is separable. In fact, it is clear that (Q +iQ)™ is a countable
dense subset of C".
(ii) The space £ is an important example of nonseparable Banach space. In fact, if we put
D :={x € £ : z(i) = 0 or 1}, then D is an uncountable subset of >°. Moreover, we
have ||z — ylloo = 1 for any z,y € D with x # y. Thus, {B(z,1/2) : © € D} is an
uncountable family of disjoint open balls of £>°. So, if C is a countable dense subset of £°°,
then C N B(x,1/2) # 0 for all x € D. Also, for each element z € C, there is a unique
element © € D such that z € B(x,1/2). It leads to a contradiction since D is uncountable.
Therefore, £%° is nonseparable.

Proposition 3.9. Let X be a normed space. Then X is separable if and only if there is a countable
subset A of X such that the linear span of A is dense in X, that is, for any element x € X and
e > 0, there are finite many elements x1,..,xn in A such that ||z — Zivz1 arxi|| < € for some
scalars aq, .., an.

Consequently, if X has a Schauder basis, then X s separable.

Proof. The necessary condition is clear.

We are now going to prove the converse statement. Suppose that X is the closed linear span of a
countable subset A. Now let D be the linear span of A over the field Q+4Q. Since Q is a countable
dense subset of R, this implies that D is a countable dense subset of X. Thus, X is separable.
The last statement is clearly follows from the definition of a Schauder basis at once. O

By Proposition 3.9, we have the following important examples of separable Banach spaces at once.

Corollary 3.10. The spaces cy and P for 1 < p < oo all are separable.
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Remark 3.11. Proposition 3.9 leads to the following natural question which was first raised by
Banach (1932).

The Basis Problem: Does every separable Banach space have a Schauder basis?
The answer is "No”.

This problem was completely solved by P. Enflo in 1973.
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